
SILICON PLANAR EPITAXIAL NPN TRANSISTOR

2N2222AC1

- High Speed Saturated Switching
- Hermetic Surface Mounted Package.
- Ideally suited for High Speed Switching and General Purpose Applications
- Screening Options Available

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

VCBO	Collector – Base Voltage	75V
V_{CEO}	Collector – Emitter Voltage	50V
V_{EBO}	Emitter – Base Voltage	6V
IC	Continuous Collector Current	800mA
P_{D}	Total Power Dissipation at $T_A = 25$ °C	500mW
	Derate Above 37.5°C	3.08mW/°C
TJ	Junction Temperature Range	-65 to +200°C
T _{stg}	Storage Temperature Range	-65 to +200°C

THERMAL PROPERTIES (Each Device)

Symbols	Parameters	Min.	Тур.	Мах.	Units
R _{0JA}	Thermal Resistance, Junction To Ambient			325	°C/W

SILICON PLANAR EPITAXIAL NPN TRANSISTOR 2N2222AC1

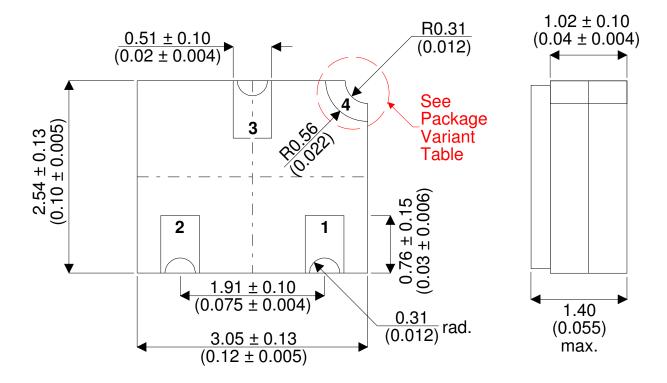
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

Symbols	Parameters	Test Conditions		Min.	Тур	Мах.	Units
V(BR)CEO ⁽¹⁾	Collector-Emitter Breakdown Voltage	I _C = 10mA	I _B = 0	50			V
	Collector Cut-Off Current	$V_{CB} = 75V$	I _E = 0			10	μΑ
I _{CBO}		V _{CB} = 60V	I _E = 0			10	nA
			T _A = 150°C			10	μΑ
Irno	Emitter Cut-Off Current	V _{EB} = 6V	I _C = 0			10	μΑ
IEBO		V _{EB} = 4V	I _C = 0			10	nA
I _{CES}	Collector Cut-Off Current	V _{CE} = 50V				50	nA
V == ()(1)	Collector-Emitter Saturation Voltage	I _C = 150mA	I _B = 15mA			0.3	- V
V _{CE(sat)} ⁽¹⁾		I _C = 500mA	I _B = 50mA			1.0	
V _{BE(sat)} ⁽¹⁾	Base-Emitter Saturation Voltage	I _C = 150mA	I _B = 15mA	0.6		1.2	
		I _C = 500mA	I _B = 50mA			2	
h _{FE} ⁽¹⁾	Forward-current transfer ratio	$I_C = 0.1 \text{mA}$	V _{CE} = 10V	50			
		I _C = 1.0mA	V _{CE} = 10V	75		325	
		I _C = 10mA	V _{CE} = 10V	100			
			T _A = -55°C	35			
		I _C = 150mA	V _{CE} = 10V	100		300	
		I _C = 500mA	V _{CE} = 10V	30			

DYNAMIC CHARACTERISTICS

	6 11 1 16 1 1	I _C = 20mA	V _{CF} = 20V				
h _{fe}	Small signal forward-current transfer ratio	_	· CE = 20 ·	2.5			
		f = 100MHz					
h _{fe}	Small Signal Current Gain	$I_C = 1.0 \text{mA}$	$V_{CE} = 10V$	50			
i ''ie		f = 1.0KHz		50			
C .	Output Canacitance	V _{CB} = 10V	I _E = 0			8	
C _{obo}	Output Capacitance	f = 1.0MHz				0	· pF
Cu	Input Capacitance	V _{EB} = 0.5V	I _C = 0			30	
C _{ibo}		f = 1.0MHz					
+	Turne On Times	I _C = 150mA	V _{CC} = 30V		25		
^t on	Turn-On Time	I _{B1} = 15mA				35	
^t off	Turn-Off Time	I _C = 150mA	V _{CC} = 30V			300	ns
		$I_{B1} = -I_{B2} = 15$	mA			500	

Notes


(1) Pulse Width \leq 300us, $\delta \leq$ 2%

SILICON PLANAR EPITAXIAL NPN TRANSISTOR 2N2222AC1

MECHANICAL DATA

Dimensions in mm (inches)

Underside View

PACKAGE VARIANT TABLE

Variant	Pad 1	Pad 2	Pad 3	Pad 4
Α	Base	Emitter	Collector	No Pad (3-Pins Only)
В	Base	Emitter	Collector	Lid Contact *

^{*} The additional contact provides a connection to the lid in the application. Connecting the metal lid to a known electrical potential stops deep dielectric discharge in space applications; see the Space Weather link www.semelab.co.uk/mil/lcc1_4 on the Semelab web site. Package variant to be specified at order.

SILICON PLANAR EPITAXIAL NPN TRANSISTOR 2N2222AC1

SCREENING OPTIONS

Space Level (JQRS/ESA) and High Reliability options are available in accordance with the <u>High Reliability and Screening Options Handbook</u> available for download from the from the TT electronics Semelab web site.

ESA Quality Level Products are based on the testing procedures specified in the generic ESCC 5000 and in the corresponding part detail specifications.

Semelabs QR216 and QR217 processing specifications (JQRS), in conjunction with the companies ISO 9001:2000 approval present a viable alternative to the American MIL-PRF-19500 space level processing.

QR217 (Space Level Quality Conformance) is based on the quality conformance inspection requirements of MIL-PRF-19500 groups A (table V), B (table VIa), C (table VII) and also ESA / ESCC 5000 (chart F4) lot validation tests.

QR216 (Space Level Screening) is based on the screening requirements of MIL-PRF-19500 (table IV) and also ESA /ESCC 5000 (chart F3).

JQRS parts are processed to the device data sheet and screened to QR216 with conformance testing to Q217 groups A and B in accordance with MIL-STD-750 methods and procedures.

Additional conformance options are available, for example Pre-Cap Visual Inspection, Buy-Off Visit or Data Packs. These are chargeable and must be specified at the order stage (See Ordering Information). Minimum order quantities may apply.

Alternative or additional customer specific conformance or screening requirements would be considered. Contact Semelab sales with enquires.

MARKING DETAILS

Screened parts are typically marked with specification number, serial number (or week of seal) as shown in the example below. All non screened parts are printed with three characters only eg. 22A.

Customer specific marking requirements can be arranged at time of order but is approximately limited to two lines of 7 Characters. This is to ensure text remains readable..

Example Marking:

ORDERING INFORMATION

Part number is built from part, package variant and screening level. The part number can be extended to include the additional options as shown below.

Type – See Electrical Stability Characteristics Table Package Variant – See Mechanical Data Screening Level – See Screening Options (ESA / JQRS)

Additional Options:

.CVP
.CVB
.DA
.SS
.SEM
.XRAY
.RAD
.GRPB
.GBDM (12 pieces)
.GRPC
.GCDE (12 pieces)
.GCDM (6 pieces)
.LVT1
.L1DE (15 pieces)
.L1DM (15 pieces)
.LVT2
.L2D (15 pieces)
.LVT3
.L3D (5 pieces)

Additional Option Notes:

- 1) All 'Additional Options' are chargeable and must be specified at order stage.
- 2) When Group B,C or LVT is required, additional electrical and mechanical destructive samples must be ordered
- All destructive samples are marked the same as other production parts unless otherwise requested.

Example ordering information:

The following example is for the 2N2222AC1 part, package variant B, JQRS screening, additional Group C conformance testing and a Data pack.

Part Numbers:

2N2222AC1B-JQRS (Include quantity for flight parts)
2N2222AC1B-JQRS.GRPC (chargeable conformance option)
2N2222AC1B-JQRS.GCDE (charge for destructive parts)
2N2222AC1B-JQRS.GCDM (charge for destructive parts)
2N2222AC1B-JQRS.DA (charge for Data pack)

Customers with any specific requirements (e.g. marking, package or screening) may be supplied with a similar alternative part number (there is maximum 20 character limit to part numbers). Contact Semelab sales with all enquiries

Website: http://www.semelab-tt.com

High Reliability and Screening Options Handbook link: http://www.semelab.co.uk/pdf/misc/documents/hirel_and_screening_options.pdf